ANGIOPLASTY SUMMIT-TCTAP 2010

The Core Valve Experience from the Siegburg Heart Center. An Update

Eberhard Grube MD

Intl. Heart Center Rhein – Ruhr, Essen, Germany Instituto Dante Pazzanese de Cardiologia, São Paulo, Brazil Stanford University, Palo Alto, California, USA

Disclosure Statement of Financial Interest

Within the past 12 months, the presenter or their spouse/partner have had a financial interest/arrangement or affiliation with the organization(s) listed below.

Company/Relationship Physician Name

Eberhard Grube, MD Medtronic, CoreValve: C, SB

Sadra Medical: E, C, SB

Direct Flow: C, SB

G – Grant and or Research Support E – Equity Interests

C – Consulting fees, Honoraria

SB - Speaker's Bureau

R - Royalty Income

O – Ownership

S - Salarv

I - Intellectual Property Rights OF - Other Financial Benefits'

CoreValve Prosthesis

Siegburg CoreValve TAVI Experience

Study	25 F	21 F	18 F	18 F	18 F
			S&E	2008	2009
Patient n	10	24	102	187	253
Time period	2004	2005	03/2006 to 03/2008	01/2008 to 12/2008	01/2009 to 12/2009

Five years, Three generations, 576 patients

CoreValve: 3 Generations 25 fr 2004 21 fr 2005 18 fr 2006

CoreValve 2005

- 24 F 1st Gen CoreValve
- Surgical Prep
- CPB pump
- General anesthesia

CoreValve 2010

- 18 F 3rd Gen CoreValve
- PCI-like procedure
- Conscious Sedation

18 French Procedural Progress

Overall Clinical Experience

Study	N	Follow-ups	Status
18 Fr Safety and Efficacy Trial	126	4 years	On-going
Australia-New Zealand Registry	140	2 years	On-going
Italian Registry	514 to date	6 months	On-going
German Series, Siegburg	>536 to date	30 days	On-going
Expanded Evaluation Registry	1483	Up to 2 years	Completed
French Registry	78 to date	6 months	On-going
Advance Study	1,000	Up to 10 years	Upcoming
US IDE Study	TBD	TBD	Upcoming

Baseline Clinical Characteristics

	18 Fr S&E (N=126)	Siegburg (N=86)	ANZ (N=62)
Age (years)	81.9 ± 6.4	82.3 ± 5.9	83.7 ± 5.4
Female	72 (57.1%)	56 (65%)	30 (48.4%)
NYHA Class I and II	32 (25.4%)	15 (17%)	11 (19.3%)
NYHA Class III and IV	94 (74.6%)	71 (83%)	46 (80.7%)
Logistic EuroSCORE (%)	23.4 ± 13.8	21.7 ± 12.6	18.7 ± 12.9 (N=58)
Peak Pressure Gradient (mmHg)	72.8 ± 23.0	70.9 ± 22.8	18.7 ± 12.9 (N=58)
Mean Pressure Gradient (mmHg)	47.8 ± 14.3	43.7 ± 15.4	48.6 ± 16.3
Aortic valve area (cm²)	0.73 ± 0.16	0.60 ± 0.16	0.7 ± 0.2

Procedural Success

Procedural success has markedly improved over time

Successful implant defined as no conversion to surgery or device-related mortality during the procedure and proper valve function immediately post-implant. The 18Fr S&E uses technical success (procedural success in re-adjudicated data was Siegburg

10

30-Day All-Cause Mortality

30-day all-cause mortality has improved over time

CoreValve Results HELIOS Heart Center Siegburg

Siegburg

	25F	21F	18F **
Patients, (n)	10	24	102
Age (years±SD)	79.1±4.6	81.7±5.2	81.8±7.4
NYHA class III and IV, n (%)	10 (100)	23 (95.8)	97 (95.1)
Karnofsky index, mean±SD	33.3±7.1	40.7±11.5	44.9±12.4*
Logistic EuroSCORE, %, mean±SD	18.3±5.4	21.1±14.8	24.5±15.4*
STSscore — mortality,%,	11.5±10.8	9.1±±.5	8.6±4.7
mean±SD			
Left ventricular ejection	51.2±15.8	52.8±17.5	51.0 ± 17.3
fraction, %, mean±SD			
Peak pressure gradient, mmHg,	72.1±27.7	67.9±22.3	71.1±24.6
mean±SD			
Mean pressure gradient, mmHg,	45.8±20.4	42.2±17.5	41.6±16.4
mean±SD			
Aortic valve area, cm2, mean±SD	0.70 ± 0.14	0.74 ± 0.24	0.64 ± 0.18
Annulus diameter, mm	24.1±1.1	23.5±1.5	23.8±1.8
Aortic regurgitation (pre) 3+ and	0	1 (4.2)	2 (2.0)
4+, n (%)			

*Significant difference 18F vs pooled 25/21F.**Statistic for the first 102 patient Grube E, Circ Cardiovasc Intervent 2008;1;167-175

EuroScore of CoreValve Implants 2005-2008 HELIOS Heart Center Siegburg

Age Distribution of CoreValve Patients 2006-2008 HELIOS Heart Center Siegburg

In-Hospital Clinical Outcome HELIOS Heart Center Siegburg

CoreValve Results HELIOS Heart Center Siegburg

	25 F	21 F	18 F initially	18 F 2008	18 F 2009
patient n	10	24	102	187	130

In-hospital

Death, n (%)	4 (40.0)	2 (8.3)	10 (9.8)	11 (5.8)	4 (3.0)
Stroke, n (%)	1 (10.0)	2 (8.3)	3 (2.9)	4 (2.1)	2 (1.5)
Major, n (%)	1 (10.0)	0	1 (1.0)	3 (1.6)	1 (0.8)
Minor, n (%)	0	2 (8.3)	2 (2.0)	1 (0.5)	1 (0.8)
Myocardial infarction, n (%)	0	(4.2)	2 (2.0)	0	0
Pacemaker requiring, n (%)*	1 (10)	3 (13)	30 (33)	70 (37)	51 (39)

^{*} In-hospital rate, based on patients without previous pacemaker

CoreValve Results HELIOS Heart Center Siegburg

	25 F	21 F	18 F initially	18 F 2008	18 F 2009
patient n	10	24	102	187	130

30 days

Death, n (%)	4 (40.0)	2 (8.3)	11 (10.8)	12 (6.3)	8 (6.1)
Stroke, n (%)	1 (10.0)	2 (8.3)	3 (2.9)	4 (2,1)	2 (1,5)
Major, n (%)	1 (10.0)	0	1 (1.0)	3 (1,6)	1 (0,8)
Minor, n (%)	0	2 (8.3)	2 (2.0)	1 (0,5)	1 (0.8)
Myocardial infarction, n (%)	0	1 (4.2)	2 (2.0)	0	0

CoreValve Clinical Results HELIOS Heart Center Siegburg

Survival Curves up to 1 year

Inclusion Criteria Study Criteria become Real World Criteria?

Morphological Criteria: (Mandatory)

- Native Aortic Valve Disease
- Severe AS: AVAI ≤0.6 cm²/m²
- 27mm ≥AV annulus ≥20mm
- Sino-tubular Junction ≤43mm

Clinical Criteria:

Logistic EuroSCORE ≥20% (21F) ≥15% (18F)

Age ≥80 y (21F) ≥75 y (18F)

Age ≥65 y plus 1+ of the following:

- Liver cirrhosis (Child A or B)
- Pulmonary insufficiency: FEV1<1L
- Previous cardiac surgery
- PHT (PAP>60mmHg)
- Recurrent P.E's
- RV failure
- Hostile thorax (radiation, burns,etc)
- Severe connective tissue disease
- Cachexia

ReDo implantation of Medtronic CoreValve

- Surgical prosthesis acts as landing zone (metallic ring)
- But sometimes no anatomical landmarks available
 - 1. stentless previous valve
 - 2. no leaflet calcification
- Measurements
 internal diameter >19 mm

per manufacture

(also CT measured)

(thickened leaflets??→ >20 mm)

ascending aorta width ≤40 mm

CT measured

annulus plane to aorta, angle <45

the <u>plane</u> of the native valve does not correspond to the orientation of the prosthetic valve

ReDo implantation of Medtronic CoreValve

Angio Example of

no anatomical landmarks as landing zone ie

- 1. no calcium
- 2. stentless previous valve

ReDo implantation of Medtronic CoreValve

annulus plane to <u>aorta</u> angle <45

but

the <u>plane</u>
of the native valve
does not correspond
to the <u>plane</u>
of the prosthetic valve

Case Example: Medtronic CoreValve in Degenerated Aortic Bioprosthesis

Age/Gender: 70 years, male

Medical History:

1994 CABG (LIMA-LAD,SVG-D1,SVG-RCA, SVG-LPL)

1999 Severe aortic stenosis – bioprosthesis

2001 PM DDD

2006 PTCA/DES RCA
+ severe degeneration of bioprosthesis

Reason for Admission: Dyspnea (NYHA IV)

Cardiac Risk Factors:

- Hypertension
- Hyperlipidemia

Case Example: Medtronic CoreValve in Degenerated Aortic Bioprosthesis

TEE

- Aortic Bioprosthesis
- AI 3+/4+
- Gradient max/mean 25/12 mmHg
- Pulmonary hypertension, PAP 70 mmHg

Logistic EuroSCORE: 45.4%

Final result

Final result: Medtronic CoreValve in Degenerated Aortic Bioprosthesis

Medtronic CoreValve Revalving Prosthesis for Degenerated Bioprosthesis

ReDo Registry (19 patients) Until June. 2009

ReDo Patient Demographics

Mean ± SD or %

Age (years)

Logistic EuroSCORE (%)

Female

NYHA

Aortic Valve Area (cm²)

Peak gradient (mm Hg)

Mean gradient (mm Hg)

LVEF (%)

 79.9 ± 7.6

 28.5 ± 13.6

47.4%

I-II: 10.5%

III-IV: 89.5%

 0.90 ± 0.35

 63.9 ± 25.3

 36.3 ± 21.7

 52.6 ± 11.4

Types of Previous Implants

Stented Valves

- Biocor (25 mm)
- Sorin Soprano (20 mm)
- Carpentier-Edwards (21-27 mm)
- Edwards Supra-Annular (20 mm)

Stentless Valves

- Sorin Freedom & Solo
- Cryolife O'Brien
- Homograft

ReDo Procedural Outcomes

Procedural Success: 100.0% (19/19)

Procedural Mortality: 0.0% (0/19)

30-Day Mortality: 0.0% (0/19)

30-Day AEs*

Permanent Pacemaker: (3/19)

Cardiac Tamponade: (1/19)

Paired NYHA Comparison Baseline to 30-Day Follow-Up

Siegburg

CT Screening for Morphologic Quantification

Precise screening due to

- limited amount of artifacts
- ability for 3D reconstruction
- good resolution

Multiplanar CT Reconstruction of Correct Annulus Plane

Para-Valvular Regurgitation

The Aortic Valvar Complex

Complex anatomic relationships

- Diseased aortic valve leaflets in close proximity to...
- aortic root (annulus)
- coronary ostia
- sinuses of Valsalva

nutubular junctio

Siegburg

- anterior mitral leaflet
- membranous septum (AVN)
- LV outflow tract

Annulus and LVOT Calcification Grades Correlate With AR - ,Siegburg Score Moderate = II Mild = I

Association of Regurgitation and Distribution of Calcifications

N = 100 pts; TAVI with 3rd Gen CoreValve; Calcification assessed by MSCT, single-center (HELIOS Heart Center Siegburg)

CoreValve Siegburg Experience Aortic Regurgitation

Siegburg

CoreValve – The Unsuitable Patient Severe Calcifications of the Access

Alternative access sites Subclavian Approach

Which is the preferred access?

AV-Block III° Following COREVALVE Implantation

There Is a Higher Incidence of Pacemaker Implant Associated with CoreValve

New Permanent Pacemaker within 30 Days

Weighted average = 23% (n=1990 patients)

Depth of Implantation May Play a Role in the Onset of Rhythm Disturbances

Rotterdam Experience (n=91)

New-onset LBBB acquired during or after valve implantation

10.3 mm

No new-onset LBBB or new-onset LBBB acquired during procedure but before valve implantation

7.3 mm

6.0 mm

It is important to remember that pacemaker implantation may not mean pacing need

New Permanent Pacemaker within 30 Days 18F Safety and Efficacy Study (n=126)

Physicians' decision to prophylactically implant play a big role in the variability among centers

Aortic Atheroma: High Risk

- 268 of 3404 CABG patients (8%) had
- atheroma (>/= 5 mm, or mobile)
- Defined by epi-aortic ultrasound¹
- 15.3% of group had intra-operative stroke¹

High Risk for:

Intra-operative stroke
Multiple morbidity
Prolonged hospital stay,
Death resulting from heart surgery.¹

Risk Factors for Aortic Atheroma:

- > 70 years old
- Diabetes Mellitus
- Hyperlipidemia
- Arterial hypertension
- Aortic calcifications on chest X-ray
- Elevated serum levels of C-reactive protein
- Other inflammatory markers
- Activated coagulation³

[•]¹Protruding aortic arch atheromas: risk of stroke during heart surgery with and without aortic arch endarterectomy. Stern et al. American Heart Journal Oct. 1999.

Cerebral Filter Protection Claret

Filter in

Truncus

Filter in left Carotid

Claret Dual Filter 7 mm filter placed in left carotid Emboli Siegburg

Embrella Embolic Deflector™

- Porous membrane designed to deflect embolic debris
- Nitinol® Frame & Shaft
- •Polyurethane Porous Membrane
- Heparin Coating
- 3 Radiopaque Markers
- Suture; Monofilament Nylon

Embrella Case Example

- Percutaneous Aortic Valve Replacement (PAVR) has established itself as a viable therapy
 - Solid clinical results
 - Expanding number of MD's performing PAVR
- Challenges remain with current devices
 - Steep, unforgiving learning curves
 - Difficult to place with precision
 - Cannot be easily repositioned for optimization
 - Cannot be atraumatically removed if needed
 - Perivalvular Leaks
 - Permanent Pacemaker Implant
 - Stroke

Transcatheter Valve Therapy Next Generation Devices

Low profile, repositionable, (?) less peri-valvular AR

My Prediction: Repetition of an Old Story

1980's, 1990's 2000's, 2010's

With the same result...

